

ANTI-PREDATOR RESPONSE OF HALIOTIS TUBERCULATA IS MODIFIED AFTER ONE GENERATION OF DOMESTICATION

Sabine ROUSSEL, Thomas BISCH, Sébastien LACHAMBRE, Pierre, BOUDRY, Jean-Lou GERVOIS, Christophe LAMBERT, Sylvain HUCHETTE, Rob DAY

M&M

Results and discussion

Conclusion

A RECENT DOMESTICATION OF HALIOTIS TUBERCULATA

Distribution of Haliotis tuberculata : the North Atlantic area (from Canary islands to the English Channel) and

Figure 1 : Fishing zones of the French ormer fishery since 1994 (Huchette and Clavier, 2004)

DEFINITION OF DOMESTICATION

« the process by which a population of animals becomes adapted to man and to the captive environment by genetic changes occurring over generations and environmentally induced developmental events reoccurring during each generation" (Price, 1984)

MECHANISM

- Developmental mechanism : modification of the expression of phenotypic traits for a given genotype
- Genetic mechanism : selection (conscious or unconscious), inbreeding, drift or genetic engineering

MODIFICATIONS DUE TO DOMESTICATION

A shift from **resource conservation**, **foraging** and **predator avoidance** functions toward **growth** and **reproduction**

In fish: foraging and anti-predator behaviour reduced in complexity and effectiveness after few generations of domestication (Huntingford & Adams, 2005)

In abalone: wild abalone responded more to touching the foot and moved more in a tank in basal situation compared to farmed abalone (Lachambre et al., 2017)

In molluscs, behavioural consequences are far less known. Developmental or genetic effects ?

Study the consequences of a **selection program** to improve growth, on the **behaviour** and the **morphology** of the selected progeny

⇒ Progeny born from 3 different broodstock origins, corresponding to 3 different levels of domestication, exposed to a <u>common environment</u>

Table 1 : Teletchea and Fontaine (2014) domestication level

0	Capture fisheries
1	First trials of acclimatization
2	Part of the life cycle completed in captivity but bottlenecks for some stages
3	Entire life cycle closed in captivity but with wild inputs
4	Entire life cycle in captivity without wild inputs but no selective breeding
5	Selective breeding program based on specific goals

BROODSTOCK REPRODUCTION

BROODSTOCK REPRODUCTION

No control of density

wild 3	wild 4	rand 2	selec
selec 1	rand 1	selec 2	rand 3
wild 2	wild 1	rand 4	selec

and per spawning

CIRCADIAN RHYTHM and FEEDING BEHAVIOUR

Quantity of algae ingested per gram of abalone

- % time hiding
- % time spent moving

No effects of broodstock origin on length and weight

at 10, 16 and 34 months of age

Growth of *H. tuberculata* is heritable (*Lachambre et al., 2017*). ⇒ However the impact of the environment during ontogeny does not allow the expression of the genetic potential

No effects of broodstock origin on immune status after a stress and survival

Parental origin	WILD	SELEC	RAND	Origin F / H	effect P
Phagocytosis efficiency (%)	13.3 ± 1.15	14.2 ± 1.21	14.3 ± 1.56	0.17	NS
Survival rate from 16 to 34 months (%)	80.7 ± 4.62	83.6 ± 4.62	75.0 ± 4.62	0.92	NS

⇒ selection pressure probably does not lead to rapid modification of genes associated with these functions

H. tuberculata : strong photophobic species
 ⇒ Change of the stimulus threshold required to trigger an escape response or receptive cells of the retina ?

3

A reduction of escape behaviour in selected offspring

Alteration responses to a predator, both in quantity and quality ⇒ reduction in the production of mucus glands or increased stimulation threshold required to trigger escape response?

WILD

RAND

Shell color : more orangered shell in selected and randomly sampled abalone (p < 0.05)

 80%
 60%
 60%
 60%

 20%
 40%
 40%

 WILD
 SELEC
 RAND

Shell pattern : more shell with stripe in selected abalone (p < 0.05)

SELEC

The color differentiation : a genetic origin (Williams 2017, Lachambre et al. 2017)
⇒ Relaxed natural selection AND unconscious selection for shells with a brighter color and nicer looking pattern ?

M&M

Domestication : a complex process with several mechanisms implicated in the transition from wild to farmed animals

WILD

- natural selection absent (relaxed selection),
- inadvertent selection due to the farm environment

RAND

Modification of shell pattern and color, and small differences in responses to a predator

+ Unconscious selection

SELEC

No effect on length, but modification of shell pattern and color, responses to a predator and hiding behaviour

• + Conscious selection

Results and discussion

Results => need to be confirmed on **younger abalone**, used for sea-enhancement program (discuss with Pierre Chauvaud in front of his poster !)

The use of wild broodstock = clearly encouraged for marine stock enhancement programs based on genetic considerations, but they should also be used for behavioural reasons.

ACKNOWLEDGEMENTS

ZGENORMEAU

BIBLIOGRAPHY

- Huchette SMH, Clavier J (2004). J Shellfish Res 23:951-955
- Huntingford FA (2004). J Fish Biol 65:122-142
- Lachambre S, Huchette S, Day R, Boudry P, Rio-Cabello A, Fustec T, Roussel S (2017). Aquaculture 467:190-197
- Lachambre S, Roussel S, Huchette S, Gervois JL, Bourdonnay L, Chenevert K, Audrezet F, Rigalma K, Lambert C, Quéré C, Bugeon J, Harney E, Enez F, Haffray P, Boudry P (2017) Physiomar conference 18-21 sept
- Price EO (1984) Q Rev Biol 59:1-32
- Teletchea F, Fontaine P (2014). Fish Fish 15:181-195

Moderate to high heritability of most traits

Traits	h²	Mean	CV
Weight at harvest (g)	0.54±0.17	28	0.27
Length at harvest (mm)	0.49±0.16	58	0.1
Bleed Meat Weight (g)	0.42±0.12	2.41	0.48
Bleed Meat Yield (%)	0.36±0.11	31	0.09
Shell color (A score)	0.71±0.14	2.12	1
Foot color (B score)	0.31±0.1	0.41	0.3
Gonad Weight (g)	0.16±0.07	0.5	0.78
Gonad Yield (%)	0.09±0.06	5	0.45
Phagocytocis (%)	0.15±0.08	18	0.48
Glycogen content mg.g (%)	0.16±0.08	1.1	1.1
Individual duration of consumption over night (h)	0.13±0.07	1.4	0.9

Results: Genetic correlations

A trade off identified: A positive genetic correlation between growth and gonad investment

Interesting genetic correlation: Selection on growth will benefit on the color and on the bled meet yield

	Foot color	Bled meet yield	Gonad yield	Shell color	Phagocyt osis	Glycogen content	Duration of nutrition over night
L32	0.37±0.19	0.30±0.21	0.72±0.23	0.23±0.21	0.19±0.30	0.23±0.27	0.15±0.30
P32	0.34±0.21	0.30±0.21	0.83±0.19	0.14±0.22	0.18±0.29	0.34±0.26	0.15±0.30

