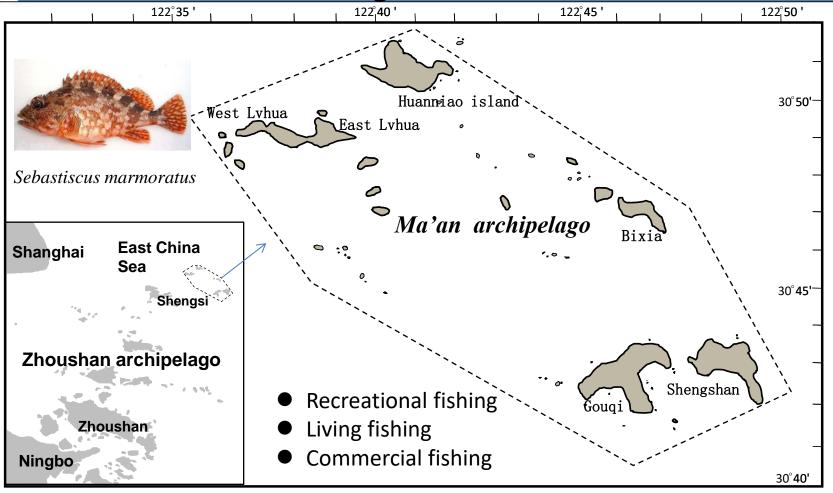


10th FSU-Mote International Symposium on Fisheries Ecology and the 6th International Symposium on Stock Enhancement and Sea Ranching SHOU

Habitat use of juvenile rockfish *Sebastiscus marmoratus* in mussel farming area: possible essential fish habitat for reef fishes

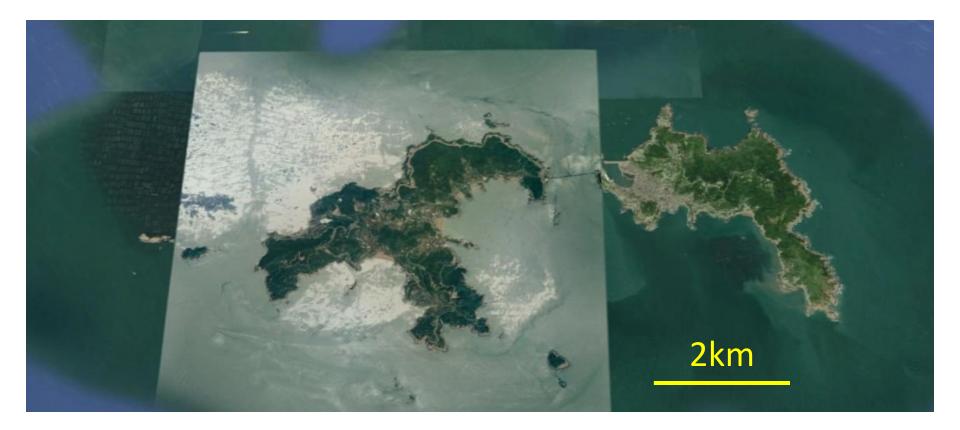

Zhenhua Wang, Jiaming Zhong , Shouyu Zhang, Kai Wang, Jun Lin&Jian Zhang

College of Marine Ecology and Environment 2019-11-13

Background

15

Title all



Cannibalism

Metapopulation dynamics? Links between Aquaculture activities and rock fish recruitment?

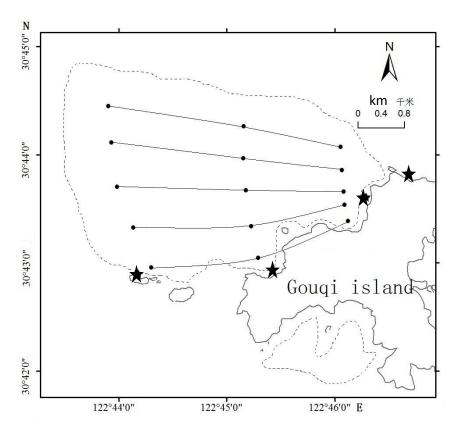
- Area= 8.27km^2 (northern part)+ 1.0km^2 (southern part)= 9.27km^2
- Species:

1.*Mytilus coruscus*(67%)

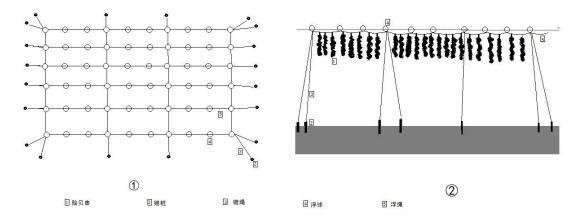
2.*Mytilus edulis*(33%)

• Amount (2018) : 1.85×10⁶strings(species 1) 9.26×10⁵strings(species 2)

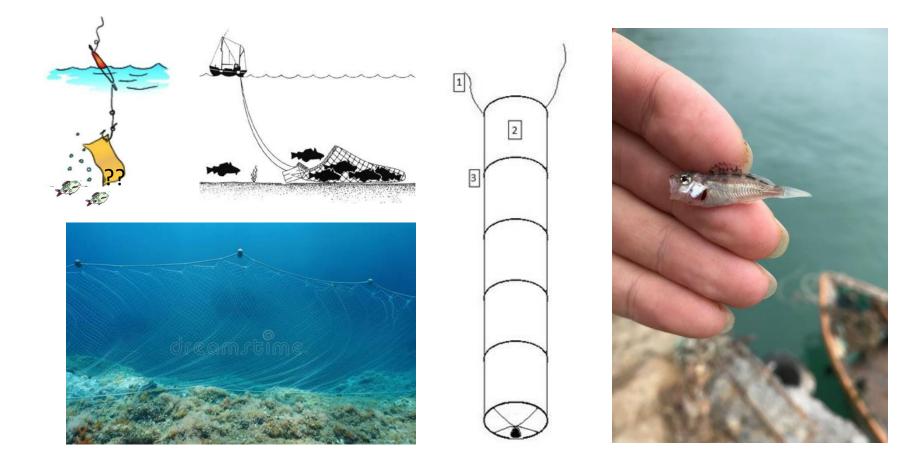
 6.5×10^4 t/year



- 5 transects
- 15 sites in mussel farming area, 4 control sites
- Monthly sampling (May-July)



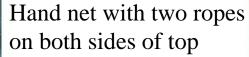
Sampling



Schematic diagram of mussel farming structure & underwater sampling

Juvenile fish collection

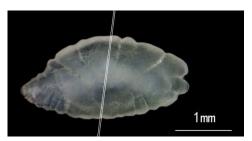
SHOU



Modified hand net

Juvenile individuals

from mussel strings



Indicators

Otolith growth traits
— temporal niche

SHO

- Feeding traits—trophic niche
- Inhabiting traits——spatial niche

Mussel farming habitat play roles as essential fish habitat?

➤ How many?

Relative density(ind/string), metapopulation abundance (estimated inds)

> Where to stay?

Horizontal distribution, interspace traits(volume, area)

➤ How long?

Otolith rings

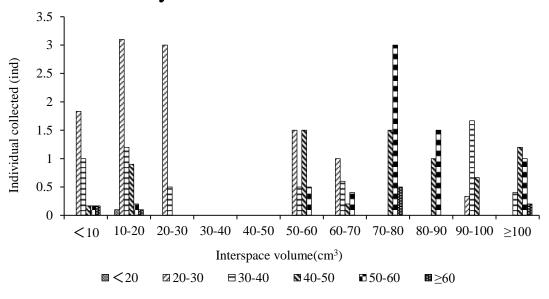
> Why?

Physical environment(for shelter), trophic environment (feeding and growth), life history need(life will find a way)

SHOU

Quantitative estimation

Month	No. of strings	Individual collected (ind)	Relative density (ind/string)	Average body length (mm)	Average body weight (g)	Estimated abundance (ind)	Estimated biomass (kg)	Control sites (ind)
May	28	155	10±5	28.57 ± 5.12	0.87 ± 0.40	1.85×10^{7}	16095	27
June	29	101	7 ± 5	45.92±6.73	3.07 ± 1.26	1.30×10^{7}	39756	22
July	27	65	5±5	51.96±5.86	4.08 ± 1.57	9.25×10 ⁶	37740	13
Average	28	107	7±6	36.77±11.68	1.78 ± 1.75	1.36×10^{7}	31197	20


Space to live or hide

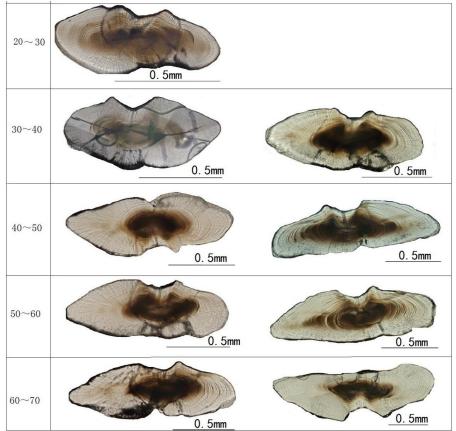
SHOU

Juveniles tended to choose space fitted to their body size

Individuals collected on board were analyzed

Food selection

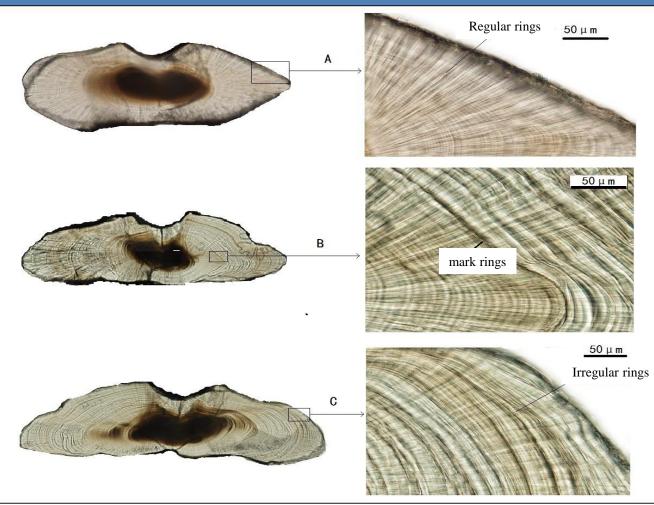
SHOU


zero empty stomach was found. Amphipoda was dominant food for juvenile rock fish (Accounting 99.2% by weight)

<i>Caprellidae</i> sp.							
Abundance percentage	Weight perce	ntage	Occurrence frequency	Abundance percentage	Weight percentage	Occurrence frequency	
75.372%	70.881%)	65.185%	24.628%	28.333%	49.630%	
Stable isotope related samp		δ ¹³ C (‰)	δ ¹⁵ N (‰)	TL	578	T	
Juveniles in farming hab		-17.77±0.63	5.44±0.49	2.16		Th.	A ST
Juveniles from habitat	rocky reef	-16.14±0.86	8.02±1.16	2.92			
Caprellidae	sp.	-17.64±0.18	3.04 ± 0.4	1.45			(Friday)
Gammarideo	n sp.	-17.23±0.30	2.80±0.27	1.38	(Clour	

Time span in their life history

L groups Otolith ring pattern for fish in target habitat Otolith ring pattern for fish in natural habitat


Month	Range (day)	Average No.(day)	Age(month)
May	33-88	51 ± 14	1-3
June	48-74	58±7	1.5-2.5
July	49-79	64 ± 8	1.5-2.5
Control	54-153	92±25	2-5

SHOU

Juvenile rock fish usually stay in mussel farming habitat for 1-3months, and mostly for 2 months.

Habitat transfer

SHOU

- Juvenile rock fish appeared in large quantity in mussel farming habitat.
- \succ They lived in a place with abundant food supply.
- And they seem to stay in a place with fitted interspace in case to hide away from hazardous situations
- They will stay in this habitat for nearly two months and then go back to where they belong.
- We are still not sure whether mussel farming habitat paly essential roles in its early life history.
- ➤ When did they move there? How? Active or passive?.....
- ➤ Good for population enhancement or not?

Thanks